If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4n^2+11n-20=0
a = 4; b = 11; c = -20;
Δ = b2-4ac
Δ = 112-4·4·(-20)
Δ = 441
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{441}=21$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(11)-21}{2*4}=\frac{-32}{8} =-4 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(11)+21}{2*4}=\frac{10}{8} =1+1/4 $
| 25=x/9+8 | | -9-(-12)=x/4 | | 232+2x/5=80 | | r+5/4+r-2/3=7 | | 2/7x-1/7=3/28 | | 4(x-5)=13 | | 5x+9-7x=9x-3+x= | | 3423-0.13x=x | | 4(4s+4)=128 | | 3423-0.13=x | | X2+(x+1)2=85 | | 1/5y+1/4=7/20 | | 194+0.7x=208+-0.7x+0.7xC | | 1/4p=1/12 | | 8x–5=12x+1 | | 4(2x-3)+7=-37 | | r-4=-11 | | x^2-14=-33x | | (x-1)^3-x+1=0 | | g+(-2)=9 | | 9x(4x-2)=0 | | -7+v=-7 | | x-1^3-x+1=0 | | X-0.13x=3423 | | x^-11x-26=0 | | x3-x2=150 | | p+8=7p-10 | | x/3=5/x | | X^2-4/8x+4=0 | | 7x+1=2x+19 | | 4.5x-7=4x-1 | | 3x/2-x=11x+9 |